finite simple groups which are the products of symmetric or alternating groups with $l_{3}(4)$
Authors
abstract
in this paper, we determine the simple groups $g=ab$, where $b$ is isomorphic to $l_{3}(4)$ and $a$ isomorphic to an alternating or a symmetric group on $ngeq5$, letters.
similar resources
finite groups which are the products of symmetric or alternating groups with $l_3(4)$
in this paper, we determine the simple groups $g=ab$, where $b$ is isomorphic to $l_{3}(4)$ and $a$ isomorphic to an alternating or a symmetric group on $ngeq5$, letters.
full textThe Subgroup Structure of Finite Alternating and Symmetric Groups
In this course we will be studying the subgroup structure of the finite alternating and symmetric groups. What does the phrase “study the subgroups of symmetric groups” mean? In this introduction I’ll suggest an answer to that question, and attempt to convince you that answer has some merit. In the process you’ll get some idea of the material we will be covering, and I’ll attempt to motivate th...
full textInfinite Products of Finite Simple Groups
We classify the sequences 〈Sn | n ∈ N〉 of finite simple nonabelian groups such that ∏ n Sn has uncountable cofinality.
full textClassification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
full textCOMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS
Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...
full textRandom graph products of finite groups are rational duality groups
Given a binomial random graph G(n, p), we determine various facts about the cohomology of graph products of groups for the graph G(n, p). In particular, the random graph product of a sequence of finite groups is a rational duality group with probability tending to 1 as n → ∞. This includes random right angled Coxeter groups as a special case. AMS classification numbers. Primary: 05C10, 05C80, 2...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of group theoryجلد ۵، شماره ۱، صفحات ۱۱-۱۶
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023